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Abstract

This document provides the specification of the proposed Hone-DHT

protocol. Hone-DHT intends to be a versatile distributed addressing

protocol to be used as building-block for applications.
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1 Overview

The Hone-DHT aims to be a robust addressing layer that does not repeat

the mistakes made by other DHT protocols. Thus, Hone-DHT by design

is

• simple: ‘‘do one task and do it well’’,

• application agnostic,

• not vulnerable to the Sibyl attack,

• no attack surface for reflection-based DDoS amplification,

• easy to use for application developers,

• independent of central servers,

• extensible and customizable.

These goals are achieved by the following design choices:

• JSON formatted protocol messages,

• cryptographically generated addresses (CGA),

• handshakes required before large replies,

• no assumptions are made regarding the functioning of the upper-layer

protocol or application,

• blind operation with regard to own (IP-)address (A.1.1),

• flexibility with respect to the choice of cryptographic primitives

(A.1.2).
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2 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals,

as shown here.

Any mention of ‘‘base64’’ throughout this RFC refers to RFC 4648, Section

3.5 (5) ‘‘Base 64 Encoding with URL and Filename Safe Alphabet’’.
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3 Protocol Overview

3.1 Cryptographic Design

Each node has a unique 256-bit address, called the ‘‘Node-ID’’. This

address is derived from a node’s public key by applying the SHA-256

hash to its JSON representation. This key is called the node’s ‘‘main

key’’. There is a second type of key which is used to sign certain

types of messages. This key is called the ‘‘current key’’ and is itself

signed by the node’s main key (A.1.3).

3.2 Distance Metric

Hone-DHT uses the XOR-distance. For this purpose, the Node-ID is regarded

as 256 bit integer:

+---------+---------+-...-+--------+

Node-ID = | byte 31 | byte 30 | ... | byte 0 |

+---------+---------+-...-+--------+

INT(Node-ID) = (byte 31) * 256^31 + (byte 30) * 256^30 + ... + (byte 0) * 256^0

The bytes are interpreted as unsigned 8 bit integers. The distance

between two nodes is small if the most significant bits in the most

significant bytes are zero. In base64 representation, the least significant

bits are converted first, thus a small ID (or distance) is indicated

by the base64 representation ending in ’A’s.

In this specification, the distance is denoted using d while the number

of leading zeros (i.e. number of consecutive most significant bits

which are zero) of d is denoted by dlz.

3.3 Protocol Field Names

The following protocol field names exist (not all appear in all messages):
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field name abbreviation

current key ck

lookup-id id

message type m

main key mk

node list nl

next request-id nrid

namespace ns

request-id rqid

source node-id src

Table 1: List of protocol field names and their abbreviations.

Notably, a destination field is missing - each node needs to be uniquely

addressable using lower layer protocols. It is therefore not possible

to run multiple nodes on the same socket (protocol, ip, port), for

example. An advantage of this is that no Node-IDs need to be known

for bootstrapping.

3.4 Message Types

The protocol consists of 15 types of messages. These provide functionality

to ping other nodes, find other nodes, check if a node participates

in a certain namespace and to get other node’s public main and current

public keys. The message types are:

message type abbreviation

ping pi

pong po

find-nodes fg

find-nodes-syn fs

find-nodes-ack fa

find-nodes-reply fr

get-main-key mg

get-main-key-syn ms

get-main-key-ack ma

get-main-key-reply mr

get-current-key cg

get-current-key-syn cs

get-current-key-ack ca

get-current-key-reply cr

unknown-namespace xn

Table 2: List of message types and their abbreviations.

The ‘‘find-nodes’’ message is abbreviated using ‘‘fg’’ to make parsing
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easier: all three-way messages for information retrieval (i.e. ‘‘find-nodes’’,

‘‘get-main-key’’ and ‘‘get-current-key’’) use the same suffix for the

same message type. These suffixes are:

message type synonym letter

initiating message get g

request for ack syn s

response ack ack a

response with information reply r

Table 3: List of message suffixes.

To avoid ambiguity with protocol field names, the ‘‘find-nodes’’ abbreviation

uses ‘‘f’’ as initial character, thus avoiding mapping ‘‘find-nodes-syn’’

to ‘‘ns’’, which is used to indicate the namespace.

3.5 Wire Format

Any message received and processed by a Hone-DHT node is either a Hone-DHT

message or a namespace-specific message. The two protocols are distinguished

by the first byte of the message. Possible values for this byte are

Value Protocol

0 Hone-DHT

1 namespace-specific

2-255 reserved

A Hone-DHT message looks as follows:

+-------------------------+-------------------+----------------------+

| protocol type (1 octet) | length (2 octets) | JSON data (variable) |

+-------------------------+-------------------+----------------------+

The length field is in network byte order and specifies the length

of the JSON data in octets.

A namespace specific message looks as follows:

+-------------------------+-------------------+

| protocol type (1 octet) | length (2 octets) |

+-------------------------+-------------------+

+--------------------------+-----------------------------+

| namespace id (32 octets) | ns-specific data (variable) |

+--------------------------+-----------------------------+

The length field is in network byte order and specifies the length

of the ns-specific data.

Stefan Birgmeier Experimental [Page 8]



RFC I-D Hone-DHT January 2020

3.6 Message Fields

The following table shows which fields appear in which messages:

message type m src rqid nrid ns id nl mk ck

ping y y y o

pong y y y d

find-nodes y y y y y

find-nodes-syn y y y y

find-nodes-ack y y y y

find-nodes-reply y y y y y

get-main-key y y y

get-main-key-syn y y y y

get-main-key-ack y y y y

get-main-key-reply y y y y

get-current-key y y y

get-current-key-syn y y y y

get-current-key-ack y y y y

get-current-key-reply y y y y

unknown-namespace y y y y

Table 4: Message-type to field association.

In the Table 4, fields marked with

y MUST be present,

(empty) MUST NOT be present,

o MAY be present depending on desired behavior,

d NEEDS to be present or absent, depending on other message’s optional

behavior.

3.7 Message Signatures

Whenever it makes sense, messages are signed. A message is signed

by inserting the message into the ‘‘data’’ field of signed data (c.f.

6.7). Unsigned messages are still encapsulated within a JSON object

with a single ‘‘data’’ field, omitting the ‘‘sig’’ field, to simplify

implementations. The following table shows which messages MUST be

signed:
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message type signed initiating reasoning

ping y (A.1.4)

pong y

find-nodes y (A.1.4)

find-nodes-syn y

find-nodes-ack y

find-nodes-reply y

get-main-key y

get-main-key-syn

get-main-key-ack

get-main-key-reply (A.1.5)

get-current-key y

get-current-key-syn

get-current-key-ack

get-current-key-reply y (A.1.6)

unknown-namespace y

Table 5: Message signature presence.

Nodes sending any of the messages marked as ‘‘initiating’’ in table

5 MUST verify the signatures of all signed messages received which

are related to the initiating message.

Nodes SHOULD verify the signatures of messages they receive if the

corresponding public key is cached (A.1.7).

State information MUST NOT be updated in response to unsigned messages

or messages with invalid or unchecked signature.

3.8 Message Validation and SYN Cookies

For all except initiating messages, information is already known about

the remote node. This information includes the remote Node-ID and

the remote ConnSpec. However, the target Node-ID might sometimes not

be known when sending initiating messages.

Based on available knowledge and message sent, additional checks SHOULD

be performed for replies:

• The ‘‘m’’ field’s value MUST be as expected.

• The ‘‘rqid’’ field’s value MUST be as expected.

• The ‘‘src’’ field’s value MUST be as expected.

• The ConnSpec of the sender MUST be equal to the expected ConnSpec.

SYN Cookies MAY be used instead of keeping lists of request IDs with

associated information on expected messages. They SHOULD NOT be used

for initiating messages, follow-ups to initiating messages (A.1.8)
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or messages where no reply is expected. Messages that qualify for

the usage of SYN-cookies are ‘‘find-nodes-syn’’, ‘‘get-main-key-syn’’

and ‘‘get-current-key-syn’’. The additional checks specified above

SHOULD be included in the generation of the SYN Cookies. SYN Cookies

MUST contain an element preventing replay-attacks such that a large

number (in a cryptographic sense) of identical incoming messages from

the same ConnSpec result in different SYN Cookies. If an implementation

cannot ensure sufficient SYN Cookie uniqueness, incoming signed messages

MUST NOT affect local node state.

One way to avoid massive replay attacks is the use of a leaky counting

Bloom filter. Special care must be taken if the implementation intends

to support detection of retransmitted messages (A.1.9).

3.9 Retransmissions

If a node expects a reply to a message it sent and the reply does not

arrive within a reasonable time frame, it MAY choose to retransmit

its last message. A message MAY be retransmitted up to three times

(a total of four times when counting the initial transmission). It

MUST NOT be retransmitted once a valid reply is received. Retransmissions

of non-initiating messages MUST be identical to the originally transmitted

message.

Regular implementations cannot recognize retransmissions: after receiving

a message with a certain rqid, the rqid is removed from the list of

expected messages. In this case, retransmissions only remedy packet

loss in the uplink.

Extended implementations might provide mechanisms to recognize retransmitted

messages. Answers to retransmitted messages MUST be identical to the

original answer. A node MUST NOT reply to more than three retransmissions.

The reasonable time frame within which a reply should arrive must be

limited. Apart from this, implementations are free to decide on mechanisms

to optimize timeouts. A statistical approach using the known round-trip

times of each node, as well as the worst-case round-trip times (useful

for communication with unknown nodes) is recommended. The limit must

ensure that such statistical algorithms cannot be abused to make a

node wait for replies too long, exhausting its resources.
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4 Messages

Only field name abbreviations are used for the wire-formatted messages.

Each message’s fields MUST be ordered in ascending fashion (A.2.2).

The ordering is performed by comparing each byte of the abbreviation,

regarded as signed 8-bit integer. If two names are equal up to the

shorter of their lengths, the shorter one is regarded as smaller than

the longer one. The field names in Table 1 are properly ordered.

When a node receives a message, it SHOULD reply. A node MAY omit a

reply if

• it is in the process of shutting down or

• it is overloaded or

• it suspects abuse (e.g. DDOS, exploiting of bugs or weaknesses

in a cryptographic system) or

• it suspects invalid implementation of the sending node (e.g. pings

sent too often).

A node MUST NOT reply if

• the message is not an initiating message and not related to any

initiating message sent by the receiving node and not related

to any previously received initiating message for which a reply

was sent or

• the message’s format is incorrect (e.g. missing signature, containing

whitespace, containing invalid characters, invalid ordering of

fields) or

• the message’s signature is incorrect.

The ‘‘nrid’’ field sets the next request ID and MUST be different from

the current request ID and MUST be different from all previously used

request IDs with cryptographic certainty. Any message that is a reply

to a message with an ‘‘nrid’’ field MUST use the ‘‘nrid’’ as ‘‘rqid’’.

Message relations are discovered by comparing the ‘‘rqid’’ field to

the expected request ID, which is the ‘‘nrid’’ sent in the previous

message (A.2.1).

A node’s current key MUST NOT change during a message sequence. If

a node receives a message which indicates that it is signed using a

different current key than a previous message in the same sequence,

the message MUST be ignored (A.2.3). A message sequence is an exchange

of related messages, such as ping - pong or find-nodes - find-nodes-syn

- find-nodes-ack - find-nodes-reply, which are linked by their request

IDs.
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4.1 Ping

Pings are used to verify node presence. If a ping contains the ‘‘ns’’

field, it is namespace-specific. Upon receiving a ping, a node SHOULD

answer with one of

pong Signal the pinging node that the pinged node is reachable and

active in the specified namespace, if set.

unknown-namespace Signal the pinging node that the pinged node is not

active in the specified namespace. This reply is only valid if

the namespace was set.

An ‘‘ns’’ field present in a ping does not indicate that the sending

node is active in the specified namespace. It is therefore possible

to check if a node is active in a certain namespace without the pinging

node being active in the namespace itself.

4.2 Find-Nodes

The ‘‘find-nodes’’ message is used for node discovery. The supplied

‘‘id’’ field specifies the search target. A node receiving a ‘‘find-nodes’’

request SHOULD answer with one of

find-nodes-syn Request verification that the sending node is reachable

at the address specified in the transport protocol.

unknown-namespace Signal that the receiving node is not active in the

specified namespace.

Upon receiving a find-nodes-ack, a node SHOULD reply with a find-nodes-reply.

It

• MUST NOT return the requesting node in its node list reply,

• MUST NOT return itself in the node list reply,

• MUST NOT return more than 20 nodes at once,

• SHOULD NOT return less than 20 nodes unless it does not know at

least 20 nodes in the requested namespace,

• MUST NOT return any nodes without a single ConnSpec,

• MUST NOT list more than 10 ConnSpecs for any returned node,

• MUST return an empty node list only if it does not know any other

nodes in the requested namespace,

• MUST NOT return any nodes where it did not verify the main and

current public key, furthermore
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• the reply’s node list SHOULD only contain nodes that can be expected

to be reachable by the requesting node.

4.3 Get-Main-Key

This message is used to get a node’s main public key. The get-main-key-reply

is not signed, however it is easy to verify the main key.

• The SHA-256 hash of the public key MUST match the Node-ID. A node

whose main key is invalid (e.g. invalid format, expired or not

yet valid) MUST be deleted from the local state.

• The key does not need a ‘‘validto’’ field. If it is absent, the

node is valid indefinitely. If a ‘‘validto’’ field is present,

the node MUST be removed from the local state after the key is

expired.

• The key does not need a ‘‘validfrom’’ field. If it is absent,

the node is valid immediately. If a ‘‘validfrom’’ field is present,

the node MUST NOT be added to the local state before the key becomes

valid.

• If both ‘‘validfrom’’ and ‘‘validto’’ fields are present, their

difference MUST be at lest 300000 (5 minutes) and ‘‘validfrom’’

MUST be smaller than ‘‘validto’’.

• If the difference between ‘‘validfrom’’ and ‘‘validto’’ is less

than 10800000 (3 hours), the node SHOULD NOT be added to the local

state.

• Similarly, if the difference between the current unix timestamp

with millisecond precision and the ‘‘validto’’ field is less than

10800000 (3 hours), the node SHOULD NOT be added to the local

state.

• The (unencoded) key ID MUST be ‘‘mk’’ (encoded: ‘‘bWs’’).

• The purpose field MUST be present and contain the sole purpose

‘‘mk’’.

• The key MUST NOT be published outside its validity period and

the node MUST NOT be used while its key is not valid.

4.4 Get-Current-Key

This message is used to get a node’s current public key. The current

key reply is signed to prevent spoofing with old current public keys.

• Both ‘‘validfrom’’ and ‘‘validto’’ fields MUST be set.
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• The current key’s ‘‘validfrom’’ field MUST NOT be smaller than

the main node key’s ‘‘validfrom’’ field. If the main node key’s

‘‘validfrom’’ field is not set, its value is assumed to be negative

infinity for the purposes of this rule.

• A new current key’s ‘‘validfrom’’ field MUST be larger than the

last current key’s ‘‘validfrom’’.

• The current key’s ‘‘validto’’ field MUST NOT be larger than the

main node key’s ‘‘validto’’ field. If the main node key’s ‘‘validto’’

field is not set, its value is assumed to be infinity for the

purposes of this rule.

• The difference of the current key’s ‘‘validfrom’’ and ‘‘validto’’

fields MUST be at least 300000 (5 minutes). The current key’s

‘‘validfrom’’ field MUST be smaller than its ‘‘validto’’ field.

• The current key’s non-encoded ID SHOULD be at most 3 bytes long.

• The current key’s ID MUST change every time a new current key

is generated. The ID SHOULD NOT repeat within 30 minutes.

• The current key’s purpose field MUST be present and contain the

sole purpose ‘‘ck’’.

• The current key in the current key reply MUST be signed by the

main node key. The signature MUST be computed only once for each

current key and remain identical in every reply.

• The current key MUST NOT be published outside its validity period.
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5 Node State

Each node keeps a state containing information about other nodes in

the network. At least 20 nodes with dlz < dmax
lz should be cached, where

dmax
lz is the distance with the largest number of leading zeros, defined

by the closest known node.

Each node MUST take steps to keep the node state updated by removing

nodes that become unreachable, whose keys expire or which misbehave

in other ways, including, but not limited to, misbehavior as specified

in this RFC. The state update procedures MUST be implemented in a way

that limits network traffic. Any time intervals between update procedures

MUST be randomized, possibly around a fixed mean value. Unsigned messages

or messages whose originality cannot be verified with a cryptographic

level of certainty MUST NOT influence the node state.

A node state MUST contain at least the following information:

• A list of known nodes.

• For each node,

{ the Node-ID,

{ the node’s main public key and its validity period, if set,

{ the node’s current public key and its validity period,

{ a limited number of ConnSpecs, but at least one,

{ the namespaces it is active in,

{ the time when the last signed message was received.

• A list of namespaces the local node is active in.

A node state SHOULD contain the following information:

• For each node,

{ the round-trip time, possibly per ConnSpec.

A node that is not known to be active in any namespace MUST be removed

from the node state. The node state NEED NOT keep track of other nodes’

current key IDs or enforce the uniqueness of other nodes’ current key

IDs within a 30 minute window. A node SHOULD store a reasonable amount

of its state in permanent storage to minimize network traffic at startup.

Stefan Birgmeier Experimental [Page 16]



RFC I-D Hone-DHT January 2020

6 Object Definitions

Hone uses various ‘‘Objects’’ in its messages, such as descriptions

of nodes, keys, identifiers etc. Their representation and possible

values are listed below. Whenever examples of a JSON representation

are given, note that the protocol does not allow for whitespace (e.g.

newline) or non-ASCII or non-printable characters. Any whitespace,

indentation etc. is thus added to improve readability. Furthermore,

examples might not be complete. Missing objects are replaced by an

ellipsis (‘‘...’’).

6.1 Identifiers

In Hone, Identifier Objects (IDs) are used as

• Node Identifier,

• message and next message Identifier,

• Namespace Identifier,

• Lookup Identifier.

Identifiers are 32 bytes (256 Bit) long and encoded with base64, without

any trailing ’=’. They can be randomly generated or derived from a

cryptographic algorithm. If they are generated according to some algorithm,

they SHOULD still be indistinguishable from randomly generated Identifiers.

Note that the base64 variant used is base64url.

Example 1:

Pfq5qRDL5S5xETEweRDHxKZ9z8fjWlZETHtgsEI09So

Example 2:

gpTHjOerwYujuqO_ZFH8jqjzAi2EeYeLE1sQPsh75k0

6.2 Connection Specification

A Connection Specification (ConnSpec) describes an endpoint at which

a node is reachable. It is encoded as JSON object and MUST have a

field ‘‘pr’’ of string type which specifies the protocol (and thus,

the format) of the Connection Specification. At the moment, UDP and

TCP are defined protocols. Implementations intended for use on the

Internet MUST be able to handle both IPv4 and IPv6 addresses. Both
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TCP and UDP ConnSpecs are defined by the fields ‘‘a’’, which contains

the IP address as string, and ‘‘p’’, which contains the port as integer.

IPv6 addresses SHOULD be properly abbreviated.

protocol ‘‘pr’’ field value

TCP/IP tcp

UDP/IP udp

Table 6: List of ConnSpec protocols.

Example 1:

{

"a":"1.2.3.4",

"p":22222,

"pr":"udp"

}

Example 2:

{

"a":"2001::1:2",

"p":22223,

"pr":"tcp"

}

6.3 ConnSpec List

A ConnSpec List is an array of ConnSpecs. In the Hone protocol it

appears in the Find-Nodes-Reply message. It is considered courteous

to sort the ConnSpec List such that the most likely reachable addresses

(e.g. determined as most-recently-used) appear before less likely reachable

addresses. Since this cannot be verified, the receiving node MUST

NOT rely on the order of addresses in the ConnSpec List.

Example:

[

{

"a":"2001::1:2",

"p":22223,

"pr":"tcp"

},{

"a":"1.2.3.4",

"p":22222,

"pr":"udp"

}

]
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6.4 Node

In the Hone protocol, the Node object appears in the Find-Nodes-Reply

message. It contains two fields: the ‘‘id’’ specifies the Node-ID

in base64 format while the ‘‘cs’’ field contains the list of ConnSpecs.

Example:

{

"cs":[...],

"id":"y11WUQFaH4Lsrrfhq8Wqp4HBkKAGqwmQkIyTLqc39Kk"

}

6.5 Node List

In the Hone protocol, the Node List object appears in the Find-Nodes-Reply

message. It is an unordered array of Node objects.

Example:

[

{

"cs":[...],

"id":"y11WUQFaH4Lsrrfhq8Wqp4HBkKAGqwmQkIyTLqc39Kk"

},

{

"cs":[...],

"id":"zNgh-UwX8CB3FoO1sFCxzN6gCUnU-El3VmpIZ-q3oaM"

}

]

6.6 Public Key

The public key is represented as JSON object (A.3.1) with the following

fields:

csys String specifying the cryptographic system, e.g. ‘‘ed25519’’.

key The key material. Binary values MUST be encoded using base64 without

padding (’=’) or newlines. A suitable JSON format (e.g. string

or object) should be chosen when a new algorithm is implemented.

id A value between 1 and 32 bytes long (before encoding), base64 encoded.

All simultaneously valid keys in use by a node MUST have distinct

key IDs regardless of cryptographic system. Note that node keys

(main and current) have more restrictive key id specifications.
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vf (validfrom) Integer, milliseconds since the Unix Epoch. Used to

specify when the public key becomes valid (the key becomes valid

at the start of the specified millisecond). If omitted, key validity

does not have a lower limit. The integer MUST be representable

using a signed 64bit integer. (A.3.2)

vt (validto) Integer, milliseconds since the Unix Epoch. Used to specify

the end of the key’s validity (the key becomes invalid at the

start of the specified millisecond). If omitted, key validity

does not have an upper limit. The integer MUST be representable

using a signed 64bit integer. (A.3.2)

pp (purposes) A JSON array of strings describing valid usage of the

key. Hone knows two purposes and MUST NOT accept any keys containing

any other than exactly one of the following purposes:

mk Node main key

ck Node current key

Example 1 (indefinitely valid node main public key):

{

"csys":"ed25519",

"key":"oA8241QzrLfrwFhn4qxv-lO0kOIAC1Hrmpf2S3m7PXo",

"id":"bWs",

"pp":["mk"]

}

Example 2 (node main public key with half-infinite validity period):

{

"csys":"ed25519",

"key":"oA8241QzrLfrwFhn4qxv-lO0kOIAC1Hrmpf2S3m7PXo",

"id":"bWs",

"vf":1573419437000,

"pp":["mk"]

}

Example 3 (node main public key with finite validity period of 31 days):

{

"csys":"ed25519",

"key":"oA8241QzrLfrwFhn4qxv-lO0kOIAC1Hrmpf2S3m7PXo",

"id":"bWs",

"vf":1573419437000,

"vt":1576097837000,

"pp":["mk"]

}

Example 4 (node current public key with 14 day validity period):

Stefan Birgmeier Experimental [Page 20]



RFC I-D Hone-DHT January 2020

{

"csys":"ed25519",

"key":"cCWjoAlR1X3oVISFvHw8eSz3eBRRJi-bAzu5mDvXHuE",

"id":"FAEA",

"vf":1573419137000,

"vt":1574629037000,

"pp":["ck"]

}

6.7 Signed Data

Signed data is represented by a JSON (A.3.1) object with the following

fields:

data A JSON object containing the Hone message.

sig A JSON object containing the signature.

The ‘‘data’’ JSON object contains the Hone message or other signed

data (the current node key is signed in the Get-Current-Key-Reply message).

The ‘‘sig’’ JSON object consists of fields which result from the signature

process and fields that specify how the signature was created and which

key was used for signing. The signature is created by signing the

complete Signed Data structure, omitting any fields that contain data

which depends on the result of the signing process. The ‘‘sig’’ JSON

object MUST contain the following fields

keyid Base64 encoded key ID of the public key which can be used to

verify the signature.
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Example:

Data supplied to signature algorithm:

{

"data":{

"csys":"ed25519",

"key":"cCWjoAlR1X3oVISFvHw8eSz3eBRRJi-bAzu5mDvXHuE",

"id":"FAEA",

"vf":1573419137000,

"vt":1574629037000,

"pp":["ck"]

},

"sig":{

"keyid":"bWs"

}

}

Signed Data:

{

"data":{

"csys":"ed25519",

"key":"cCWjoAlR1X3oVISFvHw8eSz3eBRRJi-bAzu5mDvXHuE",

"id":"FAEA",

"vf":1573419137000,

"vt":1574629037000,

"pp":["ck"]

},

"sig":{

"keyid":"bWs",

"sig":"QzTi-O9gGnACPo9kJM35ppdqZ5T2yrJIqEU_XcagCgU

x8G2dDVGMXXLVq0CcxrzE-JXe_yJS8ho65_BQ99xXAQ"

}

}
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A Reasoning

A.1 Protocol Overview

A.1.1 Blind operation with regard to own (IP)-address

Many DHT specifications silently assume that the own address is known.

However, in many cases it is difficult to detect the public IP address

(e.g. carrier NAT, home firewalls). Those DHTs then use external services

to discover their IP address. These services are centralized and thus

represent a single point of failure. They can also be used to centrally

detect usage of the DHT. Finally, their answers are often trusted without

any checks. More problems arise if the user is mobile or their public

address changes for any other reason.

Hone-DHT nodes do not need to know their own public address - it is

sufficient if the targets of their messages know it. Furthermore,

it makes bootstrapping easier since node IDs do not need to be known,

it is sufficient to know an address. The only disadvantage is that

it is not possible to run multiple nodes on the same socket (protocol,

address, port).

A.1.2 Flexibility towards cryptographic primitives

New protocols are often designed around a single cryptographic primitive.

This is in contrast to older protocols (such as TLS), which offer a

wide variety of cryptographic primitives. The argument is that the

flexibility of protocols like TLS adds little to security while often

opening up avenues for attacks (e.g. cipher downgrades, protocol downgrades).

Hone-DHT tries to pursue a middle ground by specifying only a single

cryptographic primitive in its main RFC (namely Ed25519), while making

the protocol flexible enough to allow for different cryptographic systems.

As long as Ed25519 remains secure, there should be no reason to introduce

additional algorithms. Many cryptographic algorithms have not aged

well, however. It should not be expected that Ed25519 lasts forever.

To avoid situations like in I2C (which moved from RSA to Ed25519),

which involved a network split, the protocol is flexible. Furthermore,

the slightly extended key format enables key validity periods, which

however adds the dependence on a secure time source (which, as of now,

does not exist - unless central services are trusted). The dependence

on secure time sources can be mostly avoided by using main node keys

with infinite validity. An approximate time can be used for validity

checks of current node keys.
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A.1.3 Main and current key

This choice to use two different keys was made to protect the main

key, which can have a long lifetime. While the short-lived current

key is used to sign messages (which can be forced by an attacker flooding

the node with requests), the main key only signs each current key.

Thus it is not possible for an attacker to harvest large numbers of

signatures by the main key.

Future Hone-DHT extensions may also make it possible for multiple nodes

to used the same current key, thus minimizing the update effort. Furthermore,

apart from requiring twice the memory consumption, the the overhead

of keeping current keys updated is limited due to their relatively

long lifetime. The lifetime of the current key is suggested to be

between one week and one year.

A.1.4 Missing signature of initiating messages

There are two reasons to sign data in Hone: establishing a relationship

between main and current public keys and cryptographically proving

that transmitted data is up to date and originates from a certain node.

Initiating messages contain no information apart from node presence.

Since initiating messages can be replayed without this being detected

(even if they were signed), they cannot be used to update the local

node state. Verifying the signature of such a message does not provide

any benefit: instead of forging a message and not being able to correctly

sign it, an attacker could simply replay a previously recorded initiating

message.

A.1.5 Missing signature of get-main-key-reply

The purpose of signatures is to certify that a message originates from

a certain node. The message ‘‘get-main-key-reply’’ contains the main

key as payload. It is easy to verify that the main key matches the

node by computing its SHA256-hash. It is of course possible that the

reply did not originate at the node, however (as long as SHA256 is

not broken) the key is the requested main node key with cryptographically

high probability. For blind key requests (i.e. where the ID of the

node at a certain ConnSpec is not known) it is of course possible for

a hostile party to intercept the network traffic and substitute their

own node for the one actually running at the ConnSpec. Hone-DHT does

not solve the fundamental problem of identity verification - to be

sure that one is connected to a certain third party, it is necessary

to compare their public key in person, or over a pre-existing secure

channel (the chicken-and-egg problem).
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A.1.6 Signature of get-current-key-reply

Note that the signature on the get-current-key-reply message is created

using the same current key that is shipped with this message. The

signature of the message is not intended to provide authenticity of

the message. Instead, it is intended to show possession of the current

key. This could also be done by merely signing the request ID which

was set using the ‘‘nrid’’ field in the ‘‘get-current-key-ack’’ message.

It seems sensible to use a signature of a message where only a relatively

small part is controlled by the other party.

A.1.7 Signature verification of other messages

This section concerns signature verification of messages that are not

related to initiating messages of the verifying node. In these cases,

the verifying node does not have any interest in information contained

on the messages, thus does not initiate changes to its cache. Furthermore,

messages can only be verified if the current key is already known.

If it is not known, fetching it would violate a fundamental principle

of Hone-DHT, i.e. not doing any extra work, especially if it is initiated

by a third party.

There is another problem with checking the signatures of messages which

were not initiated by the verifying node: it leaks the state of the

local cache (which is not really secret). Replying to messages with

an invalid signature is suboptimal, however. This is an open problem.

A.1.8 No SYN-cookies for initiating messages

A node is expected to send a limited number of messages. The number

of anticipated replies to initiating messages and follow-up messages

to initiating messages should be limited. It can therefore be expected

that a node keeps a full list of expected request IDs. This list can

be searched efficiently in log(N) time.

A.1.9 SYN-cookies for non-initiating messages

Non-initiating messages are messages sent by another node. The local

node typically does not intend to obtain any information from these

messages and thus does not update its cache. Cryptographic origin

verification is thus of limited value. However, a node is still required

to avoid being used as mirror of a reflection attack. SYN-cookies

open up reflection attacks because there is no way to tell if they

have been reused: even if the generated cookie includes information

such as the expected method, source node ID, these are easy to spoof.

In order to reuse a SYN-cookie, the attacker needs to know it first,

however. Thus, it needs to be sent to the attacker at some point.
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It is therefore useful to also include the expected sender ConnSpec

in the generation of the SYN-cookie. This then strictly enforces zero

mobility during the message exchange (i.e. the node cannot change

address). As additional precaution, it might be advisable to use a

leaky bloom filter or similar methods to detect cookie-reuse attempts.

A.2 Messages

A.2.1 Next request ID

The next request ID field (‘‘nrid’’) is used to chain messages cryptographically.

It provides replay protection because each reply contains data (namely

the request ID as requested in the ‘‘nrid’’ field) that cannot be predicted

and is never reused. A simple implementation simply keeps a list of

expected request IDs (i.e. the contents of the ‘‘nrid’’ field of messages

it sent) and matches incoming messages against this list (which can

be done in log(N) time). This, together with signatures ensures replay

protection.

A.2.2 Message field ordering

This provides cryptographic rigidity, i.e. makes it harder to construct

a message matching a different message’s signature.

A.2.3 Constant current key during message sequence

The current key must not change during a message sequence. For example,

when sending a find-nodes and subsequently receiving a signed find-nodes-syn,

it must be signed by the same current key as the find-nodes-reply which

is received following the find-nodes-ack. Otherwise, a node might

be forced to do a key lookup twice during a message sequence. Since

message-timeouts are in the second-range, this mechanism does not force

a node to keep an old current key around for an inconvenient amount

of time. Generally, current keys should be provisioned such that their

use starts well into the validity period (to allow for inaccurate clocks

at remote nodes). Furthermore, use should end well before the end

of the validity period, allowing the key to be used to sign message

sequences associated with the old key without using the key after the

validity period, and allowing for inaccurate clocks.

A.3 Object Definitions

A.3.1 Cryptographic JSON objects

The JSON format for keys and signatures was created before the Web

Cryptography Api (WCA) existed (Hone-DHT was conceived in 2013) and
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thus it is currently incompatible. While support for WCA formats can

easily be added, it is unlikely to completely replace the custom format

completely. The reasoning behind this is that WCA formats still rely

on OID-numbers, which do not exist for all (especially newer) cryptographic

algorithms. Furthermore, at time of writing, WCA does not provide

support for any safe elliptic curve cryptography algorithms.

It should be emphasized that (we think that) the custom JSON format

is in no way less secure than the WCA format. It is even simpler,

since it only allows for fields used by Hone-DHT.

A.3.2 Validfrom and Validto fields

These fields have millisecond precision. This enables the validfrom

field to be used as a nonce when one desires to generate keys that

hash to a particularly ‘‘nice’’ value. Such a key is mainly useful

for debugging. It is counterproductive to use these keys in production

systems, since human observers might start trusting nodes based on

the readable part of their ID (which can easily be spoofed).

The fields specify the start (‘‘top’’) of a millisecond, thus a key

that uses the same values for both fields is never valid and the validity

period can be computed using subtraction. Note that the time period

covered by 64bit numbers using millisecond precision amounts to over

584 million years, of which of course about 292 million are in the

past. This still leaves engineers a convenient number of millennia

to come up with something better.
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